

Decarbonizer Premium Report

A guide on upcoming rules and regulations on maritime sustainability + measures to reduce carbon emissions for Lady Ice Cold

> Client Name Fire Ferries Date 2023-06-25 Source <u>Sustainable Ships</u>

EXECUTIVE SUMMARY

The purpose of this document is to provide Fire Ferries with guidance and insights on maritime sustainability of Lady Ice Cold. This report elaborates on your operational profile, applicable rules and regulations and finally on carbon reduction measures and costs.

		111	Fuel	55,118	[I/day]
			CO2	169,920) [kg/day]
			ETS	€ 14,44	.3 [€/day]
2	24195 [kW] n	nax	OPEX	€ 48,29	00 [€/day]
3	358622 [kWh	n] daily	CII	D/D/D	/ D
day/year			EEXI	28.8 / 28	.7
020 2025 2030 2035 Decarbonization Measures	2040 CO 2	2045 205 CAPEX	Δ-ΟΡΕ	2043 Target Date X [daily] P	60% Reduction
Hull_Coating -	-7%	€ 492,165		2,988	165
	CO ₂	CAPEX	OPEX	[daily] P	ayback [days]

TABLE OF CONTENTS

1.0	OPERATIONAL PROFILE LADY ICE COLD	5
1.1	Vessel and operational properties	5
1.2	Current OPEX Lady Ice Cold	6
1.3	Combination – Yearly	7
1.4	Idle/Moored – Daily	8
1.5	Sailing – Daily	9
1.6	Working – Daily	10
2.0	KEY UPCOMING RULES AND REGULATIONS FOR LADY ICE COLD	n
3.0	CARBON REDUCTION MEASURES & COSTS	13
3.1	All carbon reduction measures	13
3.2	Selected measures for Lady Ice Cold	14
3.3	CII / EEXI / EU ETS	14
3.4	Technical Details Shore Power n.a.	15
3.5	Technical Details Prevent Measure Hull_Coating	17
3.6	Technical Details Change Measure n.a.	19
3.7	CAPEX Breakdown Shore Power n.a.	21
3.8	CAPEX Breakdown Prevent Measure Hull_Coating	23
3.9	CAPEX Breakdown Change Fuel n.a.	25
3.10	Future OPEX Breakdown Lady Ice Cold	27
3.11	Potential suppliers	28
4.0	APPENDIX I – ASSUMPTIONS AND CALCULATIONS	29
4.1	Input values and assumptions	29
4.2	CII Calculation	30
4.3	EEXI Calculation	32
4.4	EU ETS Calculation	33
5.0	APPENDIX II - CASE STUDIES SIMILAR TO LADY ICE COLD	34

4

About Report

Legislation is uncertain

Legislation, rules and regulations or politics in general are vague by nature. In contrast to the engineer's worldview, there is and will always remain uncertainty over upcoming rules and regulations due to 'the political process'. Additionally, the engineering performed for retrofitting is uncertain as well, as it is subject to significantly varying parameters and assumptions.

Our solution to this conundrum is twofold. First, we provide you with a free to use helpdesk, that can help you clarify and answer questions even after this report has been delivered. You can ask any question related to maritime sustainability by clicking on the 'contact helpdesk' button on the top of the page.

Secondly, we provide you with a model, not a solution. Our tools are fully customizable to your vessel and provide you with the option to easily change input parameters when new information is provided. In other words, you can use the Decarbonizer tool as a sensitivity analysis for your vessel, in which you can easily determine what works for you and what does not.

Class is exempt

Class rules and regulations from either DNV, Lloyds or other classification bureaus are excluded in the upcoming rules and regulations section because these are technical of nature. They are included in the cost breakdowns as lump-sum estimates that you can easily customize.

Liability Disclaimer

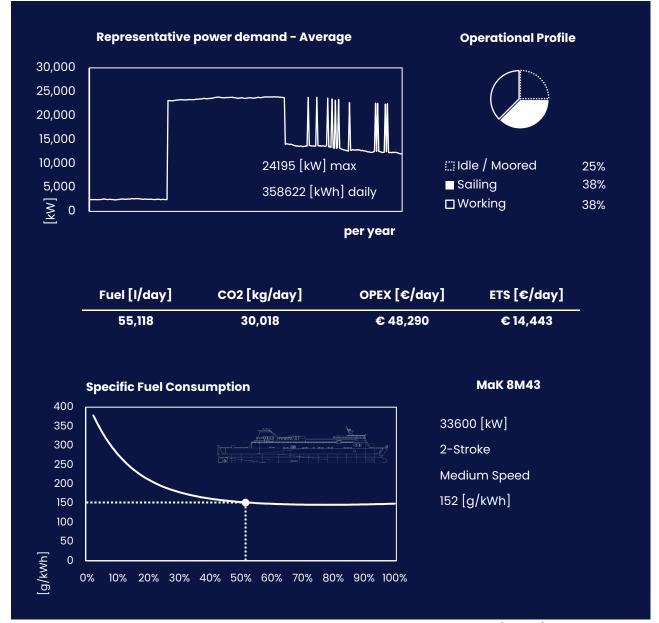
Sustainable Ships will not be held responsible for any damages that could arise from using the information provided in this report or on its platform. View all terms and conditions here.

1.0 OPERATIONAL PROFILE LADY ICE COLD

1.1 Vessel and operational properties

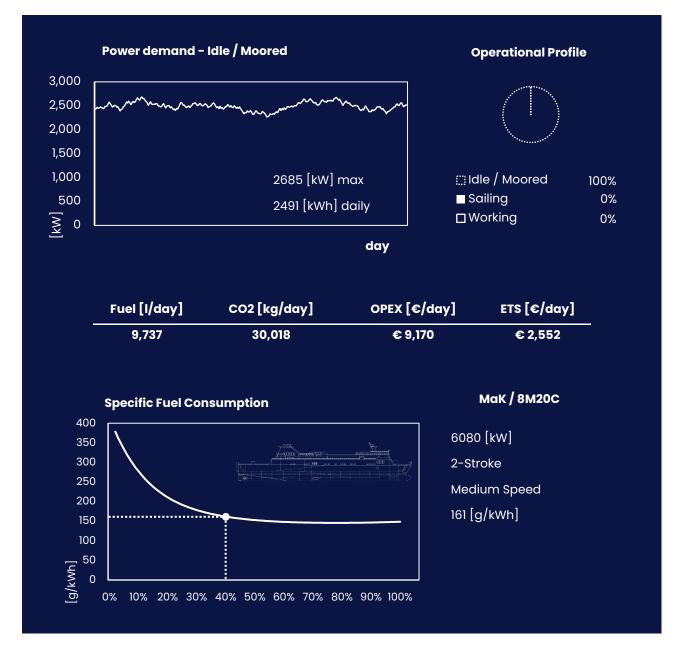
Parameter	Value	Unit
Ship name	Lady Ice Cold	
Ship type	Ro-ro passenger	
Fuel type	HFO	
Main Engines	MaK 8M43	
Installed Power	33600	[kW]
Engine Type	2-Stroke	150 [g/kWh]
Engine Speed	Medium	
Aux Engines	МаК / 8М20С	
Aux Power	6080	[kW]
Aux. Engine Type	4-Stroke	
Aux. Engine Speed	High	[kW]
Year built	2018	[years]
Ship age	5	[years]
Lifetime from today	25	[years]
Target Date	2043	
Gross Tonnage	51,388	[-]
Deadweight	7,445	[mT]
Cargo capacity	5,956	[m3]
Area	Europe	
Propulsion Type	Direct Drive	
Cruising speed	19	[knts]
Tank Capacity	1,226	[m3]
Length overall	187	[m]
Extreme Beam	31.6	[m]
Hull Roughness	Smooth	

Parameter		
Idle / Moored	25%	91 days per year
Sailing	38%	137 days per year
Working	38%	137 days per year

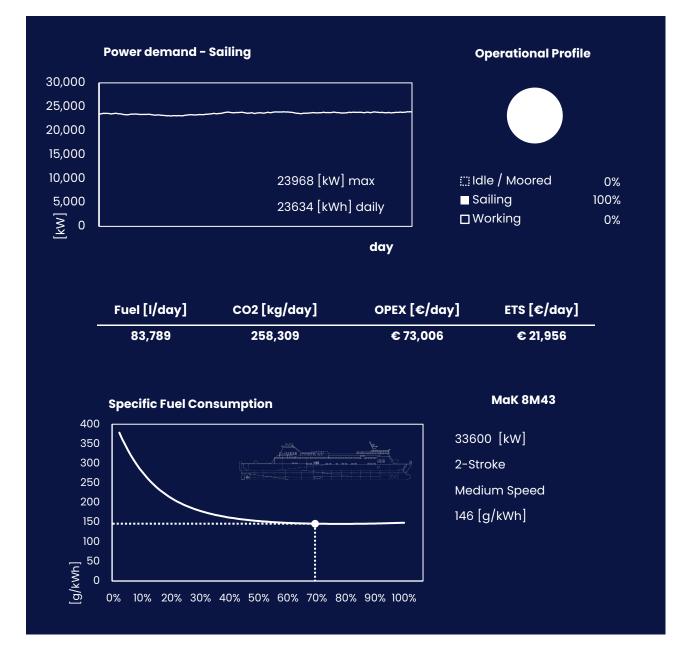

1.2 Current OPEX Lady Ice Cold

		Idle	/ Moored		Sailing	V	Vorking	A	verage
			91		137	i	136.875		
		[do	ıys/year]	[d	ays/year]	[do	ays/year]	p	er [day]
Max Power	[kW]		2,685		23,968		24,195		24,195
Average Power	[kW]		2,491		23,634		14,552		14,943
Energy Required	[kWh]		59,780		567,222	;	349,250	3	358,622
Fuel Consumption	[liter]		9,737		83,789		56,700		55,118
Engine Hours	[hrs]		24		24		24		24
CO2 Emissions	[kg]		30,018		258,309		174,800	1	69,920
NOx Emissions	[kg]		745		6,409	4,337		4,216	
SOx Emissions	[kg]		460		3,959		2,679		2,604
PM Emissions	[kg]		70		601		407		396
CH4 Emissions	[kg]		0		4		3		3
		-							
Fuel	[€]	€	5,842	€	50,273	€	34,020	€	33,071
Lease / Rental	[€]	€	-	€	-	€	-	€	-
Engine Maintenance	[€]	€	480	€	480	€	480	€	480
Spares / Consumables	[€]	€	48	€	48	€	48	€	48
ETS Costs	[€]	€	2,552	€	21,956	€	14,858	€	14,443
Coating	[€]	€	248	€	248	€	248	€	248

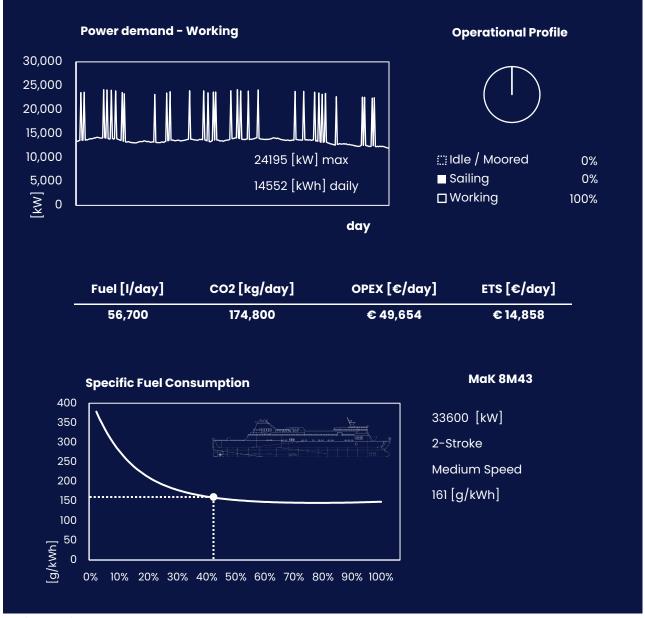
OPEX	daily	€ 9,170	€ 73,006	€ 49,654	€ 48,290
	yearly	€ 3,346,985	€ 26,647,035	€ 18,123,812	€ 17,625,814


7

1.3 Combination – Yearly



The estimated operational profile of Lady Ice Coldwhen operational modes are combined (i.e. idle/moored, sailing and working). For example, a vessel can be moored for 25% of the year and sailing for 75% of the year, which results in a combined power demand representing vessel operations. This can be viewed as 'yearly combined profile".


1.4 Idle/Moored – Daily

1.5 Sailing – Daily

1.6 Working – Daily

'Working' is defined as an operational mode in which the vessel operates on its main engines and experiences peaks in power demand. This can be the case for offshore working vessels when on DP or operating cranes.

2.0 KEY UPCOMING RULES AND REGULATIONS FOR LADY ICE COLD

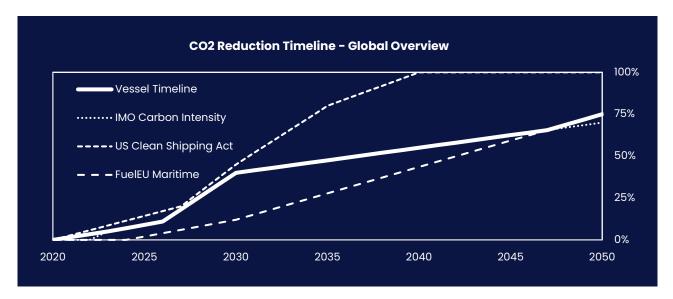


Figure 5. CO2 reduction timelines for key organizations around the world.

	Key takeaways
For 2043 a CO2 reduction of 60% is required	Key regulatory frameworks for maritime sustainability include IMO and EU, of which IMO is more stringent at the moment and EU probably after 2030. In addition, the US Clean Shipping Act requires all vessels to be fully zero emission by 2040. Client requirements have not yet been incorporated.
Electrification is excluded	Electric vessels 'pass' all rules and regulations that have been identified. It is therefore highly recommended to pursue a course of electrification of your vessel where possible to ensure smooth sailing in the future.
Shore power is mandatory	Shore power will become fully mandatory in EU and US by 2030, as per FuelEU and US clean shipping act and this trend in expected to be tightened while at berth. Shore power in the Netherlands is more attractive for operators due to HBE.
Carbon tax & fossil is expensive	Shipping industry will be incorporated into EU ETS from 2025 onwards. With the current price of €85 per mT CO2, that would equate to a surtax of roughly €255 per mT of fuel.

Key rules and regulations for Lady Ice Cold					
Rule/Reg	Organization	In Effect	Area	Impact / Restraint	
PAS	Netherlands	2021	Europe	-80% NOx	
HBE	Netherlands	2022	Europe	Get € 0.04-0.20 kWh	
CII	IMO	2023	Global	Your CII rating is non-compliant (
EU ETS	EU	2024	Europe	€ 5271779 per year	
FuelEU Maritime	EU	2025	Europe	Unknown	
ECA Norway	IMO	2019	Europe	0.1% SOx max	
Global Sulphur Limit	IMO	2020	Global	0.5% SOx max	
ECA North Sea	IMO	2021	Europe	0.1% SOx max	
EEXI	IMO	2023	Global	Required EEXI = 28.71	
ECA Mediterranean	IMO	2025	Europe	0.1% SOx max	
IMO Carbon Price	IMO	2026	Global	Unknown	
			1		
			1		

CII / EEXI / EU ETS					
CII EEXI EU ETS [year]					
D/D/D/D	28.83	€ 5,271,779			

Purchase the **premium Rules and Regulations report** for an overview on all rules and regulations on sustainability. This includes regulations imposed by energy majors, shipping companies and ports around the world that might affect your operations, as well as a one-hour consult. Click below fore more information.

Learn more

3.0 CARBON REDUCTION MEASURES & COSTS

3.1 All carbon reduction measures

Below is an overview of several key carbon reduction measures. Δ-OPEX represent the difference between current OPEX and OPEX when measures is implement. OPEX of carbon reduction measures include fuel, ETS and maintenance costs. All costs are indicative. No rights or claims can be made based on this analysis.

Measure	CO ₂	CAPEX	∆-OPEX [daily]	Payback [days]
Shore_Power	-4%	€ 671,400	€ 2,260	-
Shore_Battery	-4%	€ 23,019,177	€ 2,260	-
Solar_PV	-1%	€ 441,605	-€ 166	2,666
Wind_Power	n.a.	-	-	-
Hull_Coating	-7%	€ 492,165	-€ 2,988	165
Battery_Hybrid	n.a.	-	-	-
Biofuels	-56%	€ 676,800	-€ 1,398	484
Ammonia	-93%	€ 24,101,820	€ 55,658	-
Methanol	-85%	€ 15,384,794	€ 50,239	-
Hydrogen	-93%	€ 155,837,418	€ 204,587	-
Full_Electric	-93%	€ 247,290,188	-€ 4,155	59,512
Carbon_Capture	n.a.	-	_	_

Current situation	0%	€0	€ 48,290	-
After measures	-7%	€ 492,165	€ 45,302	165

Target reduction

Estimate based on vessel end-of-life

-60%

3.2 Selected measures for Lady Ice Cold

The below carbon reduction measures have been applied to Lady Ice Cold Click on the buttons below the figures to learn more, or contact the helpdesk to clarify any questions.

Selected carbon reduction measures						
Shore Power	Prevent Measure	Change Measure				
None Chosen		None Chosen				
=	Hull_Coating	=				

3.3 CII / EEXI / EU ETS

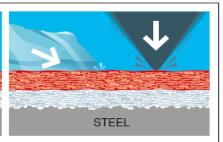
Below is an overview of CII, EEXI and EU ETS before and after implementation of carbon reduction measures. Elaboration on the calculation of CII, EEXI and EU ETS are provided in Appendix I.

CII / EEXI / EU ETS					
CII EEXI EU ETS					
Current	D/D/D/D	28.83	€ 5,271,779		
After C / C / D / D 26.87 € 4,915,096					

3.4 Technical Details Shore Power n.a.

None chosen

3.5 Technical Details Prevent Measure Hull Coating


Hull coating is the practice of applying coating to reduce vessel drag, thereby reducing the energy required to propel the vessel through water. In this case, Ecospeed is used as benchmark. Ecospeed is a hard, non-toxic coating system which provides long-lasting protection and optimal hydrodynamic performance for all ship hulls. Instead of using chemicals to try to kill and repel marine fouling organisms, Ecospeed uses a hard coating along with mechanical removal of fouling at an early stage. With pro-active cleaning, the system results in major fuel savings and a reduction in carbon dioxide emissions compared to conventional coating systems. The average fuel consumption reduction for your vessel over a 10-year period is estimated at 7%.

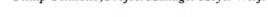
Other	Value	Unit
Sailing Time	38	[%]
Estimated Ship Hull Area	7072	[m2]
Ecospeed Paint Costs	40	[€/m2]
Conventional Coating Costs	30	[€/m2]
Application and Grid Blasting Costs	25	[€/m2]
Conventional Coating R&M Costs	18	[€/m2]
Cleaning	6	[/year]
Cleaning Costs	3	[€/m2]
Hull roughness	Smooth	-
Ship Age	5	[years]
Fuel reduction 10-yr average - sailing only	13	[%]
Max. fuel reduction 10-yr average - sailing only	23	[%]
Current hull coating costs	248	[€/day]
Ecospeed hull coating costs	475	[€/day]
Fuel reduction with Ecospeed	2238	[€/day]
Percentage cleaning costs	73	[%]
Conventional coating grid blasting?	TRUE	

Learn more about Hull_Coating

Two identical layers applied on the prepared surface make an impermeable barrier.

Water, chemicals and marine growth cannot penetrate through the coating.

Recognized as abrasion resistant ice coating withstanding mechanical impact.


"After 10 years of trading on the same routes, m/v Patriot's Ecospeed coating is still going strong. We know that after an underwater clean the fuel consumption goes down to what it was when the paint was new." Michael Tensing, Interscan Schiffahrt

"The biggest thing was the surprise at seeing the areas where you'd expect it to have taken a lot of damage. I then jokingly asked the question, 'Are you sure you've taken this ship to the ice?" Stephen Lee, Senior Marine Engineer British Antarctic Survey (BAS)

"Ecospeed with regular hull cleaning was a solution that worked for this cruise ship owner. The improved performance led to lowered fuel costs and CO2 emissions." Philip Gennotte, Project Manager Meyer Werft

"The Ecospeed solution was the most effective coating system for reducing drag. With a hard coating we are also permitted to clean the hull underwater in the ports where we operate without damaging its waters and sediments." Ismo Saaros, Director, Project Management, VG-Shipping

Haven 29, 2030 Antwerp - Belgium Phone: +32 3 213 53 18 info@subind.net www.subind.net

3.6 Technical Details Change Measure n.a.

None chosen

This page is intentionally left blank.

3.7 CAPEX Breakdown Shore Power n.a.

None chosen

None chosen

3.8 CAPEX Breakdown Prevent Measure Hull_Coating

	Time [hours]	Costs
Design/engineering supplier	20	€ 2,400
Design/engineering shipowner	20	€ 2,400
Equipment procurement	_	€ 282,883
Execution/retrofitting	160	€ 192,802
Commissioning	40	€ 4,000
Class/Certification	40	€ 7,680

Total

€ 492,165

- Design/engineering shipowner
- Equipment procurement
- Execution/retrofitting
- Commissioning

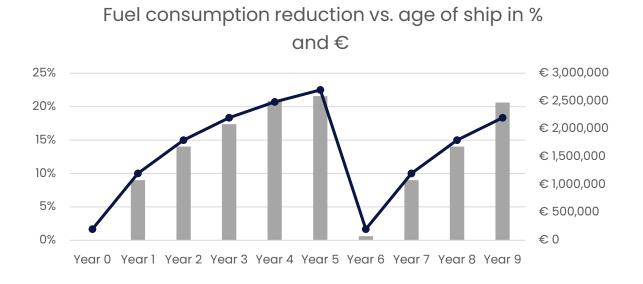
7 fte weeks

Class/Certification

Total Cost

Design/engineering supplier	20				€ 2,400
General design and engineering supplier	20		EUR/hr	€ 120	€ 2,400
Design/engineering shipowner	20				€ 2,400
General design and engineering shipowner	20		EUR/hr	€ 120	€ 2,400
Equipment procurement	0				€ 282,883
Ecospeed Coating, price per m2		7072.08	EUR/m2	€ 40	€ 282,883
Execution/retrofitting	160				€ 192,802
Creating means of access for safe working location	40		EUR/hr	€ 100	€ 4,000
Cleaning/removing obstructions from working locations	40		EUR/hr	€ 100	€ 4,000
nstallation/removal of scaffolding on working locations	40		EUR/hr	€ 100	€ 4,000
Application, initial coating and grit blasting costs		7072.08	EUR/m2	€ 25	€ 176,802
Non-destructive testing of coating	40		EUR/hr	€ 100	€ 4,000
Commissioning	40				€ 4,000
Training and familiarising of crew	40		EUR/hr	€100	€ 4,000
Class/Certification	40				€7,680
Approval costs of drawings/calculations	24		EUR/hr	€ 120	€ 2,880
Surveyor attendence during fabrication/installation incl. travelling expenses	20		EUR/hr	€ 120	€ 2,400
(Writing) Operational manuals and procedures	20		EUR/hr	€120	€ 2,400

Time [hrs]


Units

Parameter

Price per hour/unit

All numbers are indicative. Ask your supplier for fixed numbers.

It is assumed transportation costs for all equipment is included in the pricing.

3.9 CAPEX Breakdown Change Fuel n.a.

None chosen

None chosen

3.10 Future OPEX Breakdown Lady Ice Cold

The below table shows the current and future OPEX breakdown for Lady Ice Cold, based on the representative daily operational profile. Depreciation of equipment has not been taken into account (neither for existing or newly purchased equipment). Rental of equipment will be made available soon.

		Current	Future
Max Power	[kW]	24,195	24,195
Average Power	[kW]	14,943	13,790
Energy Required	[kWh]	358,622	330,970
Fuel Consumption	[liter]	55,118	51,388
Engine Hours	[hrs]	24	24

Fuel	[€]	€ 33,071	€ 30,833
Lease / Rental	[€]	€0	€0
Engine Maintenance	[€]	€ 480	€ 480
Spares / Consumables	[€]	€ 48	€ 48
ETS Costs	[€]	€ 14,443	€ 13,466
Coating	[€]	€ 248	€ 723

OPEX	daily	€ 48,290	€ 45,549
	yearly	€ 17,625,814	€ 16,625,445

3.11 Potential suppliers

The below partners can assist in implementing the proposed measures on-board your vessel. You can contact them directly, or contact the helpdesk for further guidance. In case you prefer to work with (local) partners on your own, feel free to use this report as a guideline for their input.

Preferred Suppliers			
Technology	Supplier	Contact	
-	-		
Hull Coating	Subsea Industries	<u>mvanruiten@subind.net</u>	
-	-		

4.0 APPENDIX I – ASSUMPTIONS AND CALCULATIONS

4.1 Input values and assumptions

Parameter	Value	Unit
Fuel Price	€ 0.60	[€/I]
ETS	€ 85	[€/mT]
Engine Maintenance Costs	€ 20	[€/hr]
Spares / Consumables Costs	€2	[€/hr]
Parasitic Load Engine	15%	[-]
(Engineering) Hour External	€ 120	[€]
(Engineering) Hour Internal	€ 100	[€]
Depreciation Time	10	[years]
Annual (Fuel) Price Increase	1	[-]

HFO density	0.99	[kg/I]
CO2 Emission Factor HFO	3.114	[kg/kg]
NOx Emission Factor HFO	0.07726	[kg/kg]
SOx Emission Factor HFO	0.04773	[kg/kg]
PM Emission Factor HFO	0.00725	[kg/kg]
CH4 Emission Factor HFO	0.00005	[kg/kg]

Fuel after change	-	[-]
Fuel density after change measures	0.99	[kg/liter]
Fuel price after change measure	€ 0.60	[€/liter]
Shore-side kWh price	€ 0.35	[€/kWh]
CO2 Emission Factor	3.114	[kg/kg]
Nox Emission Factor	0.07726	[kg/kg]
Sox Emission Factor	0.04773	[kg/kg]
PM Emission Factor	0.00725	[kg/kg]
CH4 Emission Factor	0.00005	[kg/kg]

4.2 Cll Calculation

Lady Ice Cold CII Scores	2023	2024	2025	2026
Baseline	D	D	D	D
After reduction measures	С	С	D	D

Cil Input Values			
Operational Mode	Combined		
CO2 Emissions	62,020,934,921	[g/year]	
Capacity	51,388	[mT]	
Distance Sailed	84,260	[nm/year]	
a	7,540.00	for Reference line	
С	0.587	for Reference line	
CII ref	12.94	Reference line	
Required CII 2023	12.30	5% reduction	
Required CII 2024	12.04	7% reduction	
Required CII 2025	11.78	9% reduction	
Required CII 2026	11.52	11% reduction	
Attained Current CII	14.32	Baseline	
Attained CII	13.35	After modifications	

Learn more about Cll

Cll Scores per Technology	2023	2024	2025	2026
Shore_Power	С	D	D	D
Shore_Battery	С	D	D	D
Solar_PV	D	D	D	D
Wind_Power	D	D	D	D
Hull_Coating	С	С	D	D
Battery_Hybrid	n.a.	n.a.	n.a.	n.a.
Biofuels	А	А	А	А
Ammonia	А	А	А	А
Methanol	А	А	А	А
Hydrogen	А	А	А	А
Full_Electric	А	А	А	А
Carbon_Capture	n.a.	n.a.	n.a.	n.a.

4.3 EEXI Calculation

 $\mathsf{EEXI} = \frac{CO2\ emissions}{Transportation\ work}$

 $\mathsf{EEXI} = \frac{\textit{Main engine emissions + Auxiliary engine emissions + (PTI - Innovative electrical energy technologies) - Innovative propulsion energy technologies}{\textit{Capacity * Reference speed * Reduction factors}}$

 $\mathsf{EEXI} = \frac{\left(\prod_{j=1}^{n} f_{j}\right) \left(\sum_{i=1}^{nME} P_{ME(i)} C_{ME(i)} SFC_{ME(i)}\right) + \left(P_{AE} C_{AE} SFC_{AE}\right) + \left(\left(\prod_{j=1}^{n} f_{j} \sum_{i=1}^{nPTI} P_{PTI(i)} - \sum_{i=1}^{neff} f_{eff(i)} P_{AEeff(i)}\right) C_{FAE} SFC_{AE}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} P_{eff(i)} C_{FME} SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} C_{FME} SFC_{ME}\right) - \left(\sum_{i=1}^{neff(i)} C_{FME} SFC_{ME$

EEXI Input values			
Ship Type	Ro-ro passenger		
Operational Mode	Sailing		
CO2 Emissions	10,762,882	[gram/hour]	
Capacity	7,445	[mT]	
Reference Speed	19	[knts]	
fi	1		
fc	0.957293342		
fl	1		
fw	1		
fm	1		
Reduction factor	0.05		

EEXI	28.83	[gram/mT mile]
EEXI After	26.87	[gram/mT mile]
EEXI Required	28.71	[gram/mT mile]

Learn more about EEXI

4.4 EU ETS Calculation

Yearly ETS Costs	2024	2025	2026	2027
Current	€0	€ 2,108,712	€ 3,690,246	€ 5,271,779
Shore_Power	€0	€ 2,015,580	€ 3,527,266	€ 5,038,951
Shore_Battery	€0	€ 2,015,580	€ 3,527,266	€ 5,038,951
Solar_PV	€0	€ 2,095,992	€ 3,667,986	€ 5,239,980
Wind_Power	€0	€ 2,100,303	€ 3,675,531	€ 5,250,759
Hull_Coating	€0	€ 1,966,038	€ 3,440,567	€ 4,915,096
Battery_Hybrid	n.a.	n.a.	n.a.	n.a.
Biofuels	€0	€ 788,663	€ 1,380,160	€ 1,971,657
Ammonia	€0	€0	€0	€0
Methanol	€0	€ 183,079	€ 320,388	€ 457,697
Hydrogen	€0	€0	€0	€0
Full_Electric	€0	€0	€0	€0
Yearly Gains	€0	-€ 142,673	-€ 249,679	-€356,684

Year	% Phase-in
2024	0%
2025	40%
2026	70%
2027	100%

Learn more about EU ETS

5.0 APPENDIX II - CASE STUDIES SIMILAR TO LADY ICE COLD

This section is under development. In the future, case studies similar to your vessel type will be taken from sustainable-ships.org/stories as reference. Feel free to browse or contact the helpdesk for more stories!

4/30/21

Hydrogen Powered Propulsion for an Offshore Crane Vessel

This thesis performs a technical, economical and environmental feasibility study of three dense hydrogen carriers as a fuel to power the largest semi-submersible offshore crane vessel in the world – Heerema's Sleipnir.

3/12/21

Methanol Hybrid Offshore Working Vessels

This thesis by J.M. Rozendaal at van Oord focuses on the technical, environmental and economic impact of a methanol hybrid power plant design for new-build offshore working vessels. Its conclusion is that a methanol solution has a CO2 reduction potential up to 99% and a CO2 price of 78 euro per ton CO2 reduction.